Error! No text of specified style in document.
1
Error! No text of specified style in document.

	3GPP TSG-T2 /ETSI SMG4

Busan, South Korea

14th - 18th May 2001
	T2-010403

	CR-Form-v3

	CHANGE REQUEST

	

	(

	23.057
	CR
	CR-Num
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Classmark 4 non-security

	
	

	Source:
(

	Microsoft Corporation

	
	

	Work item code:
(

	MEXE-EHANC
	
	Date: (

	15.05.2001

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Introduction of a new MExE classmark based on CLI, the Common Language Infrastructure. This CR introduces the changes to the non-security parts of the specification.

	
	

	Summary of change:
(

	Modifcations to sections 2, 3, 4, 7 and 8 to introduce CLI.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	2, 3, 4, 7, 8

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	This CR supercedes T2-010388.

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document defines the stage 2 and stage 3 description of the Mobile Execution Environment (MExE). Stage 2 identifies the functional capabilities and information flows needed to support the service described in stage 1.

The present document includes information applicable to network operators, service providers and terminal, switch and database manufacturers.

The present document contains the core functions for a Mobile Execution Environment (MExE) which are sufficient to provide a complete service.

MExE uses a number of technologies to realise the requirements of the stage 1 description (3GPP TS 22.057). The present document describes how the service requirements are realised with the selected technologies. The TS is devised into sections each covering the aspects relating to particular MExE technologies, it is intended that this specification will evolve along with the MExE technologies. A generic section of the specification covers areas of MExE common to all technologies.

Implementation of this specification outside the UE (User Equipment) is outside the scope of this specification.

2
References

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".

[2]
3GPP TS 22.057: "MExE Stage 1 Description".

[3]
Personal Java 1.1.1 or higher, Sun Microsystems http://www.javasoft.com/products/personaljava/
[4]
JavaPhone API version 1.0, http://java.sun.com/products/javaphone/.

[5]
JTAPI 1.2, Sun Microsystems http://www.java.sun.com.

[6]
Wireless Application Protocol (WAP) June 2000 Conformance Release http://www.wapforum.org.

[7]
vCard – The Electronic Business Card Exchange Format – Version 2.1, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/vcard-21.doc.

[8]
vCalendar – The Electronic Calendaring and Scheduling Exchange Format – Version 1.0, The Internet Mail Consortium (IMC), September 1996, http://www.imc.org/pdi/

[9]
Hypertext Transfer Protocol – HTTP/1.1, IETF document RFC2616, http://www.w3.org/Protocols/rfc2616/rfc2616

[10]
Java Mail API version 1.0.2, http://www.java.sun.com

[11]
3GPP TR 22.170: "Universal Mobile Telecommunications System (UMTS); Service aspects; Provision of Services in UMTS - The Virtual Home Environment".

[12]
3GPP TS 22.121: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Service Aspects; The Virtual Home Environment"

[13]
ISO 639 International Standard - codes for the representation of language names.

[14]
3GPP TS 22.101: "3rd Generation Partnership Project; Service Aspects; Service Principles".

[15]
CC/PP Exchange Protocol based on HTTP Extension Framework; W3C http://www.w3.org/TR/NOTE-CCPPexchange

[16]
Composite Capability/Preference Profiles (CC/PP):A user side framework for content negotiation; http://www.w3.org/TR/NOTE-CCPP.

[17]
UAProf Specification http://www.wapforum.org/what/technical.htm

[18]
JDK 1.1 security http://www.javasoft.com/products/jdk/1.1/docs/guide/security/index.html

[19]
Java 2 security http://www.javasoft.com/products/jdk/1.2/docs/guide/security/index.html

[20]
Java security tutorial http://java.sun.com/docs/books/tutorial/security1.2/overview/index.html
[21]
OCF 1.1.: "Smartcard API specified by OpenCard Consortium http://www.opencard.org

[22]
RFC 1738 Uniform Resource Locators (URL) http://www.w3.org/pub/WWW/Addressing/rfc1738.txt
[23]
The MD5 Message Digest Algorithm", Rivest, R., RFC 1321, April 1992. URL: ftp://ftp.isi.edu/in-notes/rfc1321.txt

[24]
ISO/IEC 10118-3 1996: "Information technology - Security techniques - Hash-functions - Part 3: Dedicated hash-functions".

[25]
IETF RFC 2368: "The mailto URL scheme".

[26]
ITU-T Recommendation X.509: "Information technology – Open Systems Interconnection – The Directory: Authentication framework".

[27]
GSM 11.11: "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM-ME) interface".

[28]
3GPP TS 23.107: "3rd Generation Partnership Project; Technical Specification Group Services and system Aspects QoS Concept and Architecture (3GPP TS 23.107)".

[29]
3GPP TS 24.007: "3rd Generation Partnership Project; Technical Specification Group Core Network; Mobile radio interface signalling layer 3; General Aspects (3GPP TS 24.007)".

[30]
3GPP TS 24.008: "3rd Generation Partnership Project; Universal Mobile Telecommunications System; Mobile radio interface layer 3 specification, Core Network Protocols – Stage 3 (TS 24.008)".

[31]
3GPP TS 23.060: "3rd Generation Partnership Project; Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service Description; Stage 2 (3GPP TS 23.060)".

[32]
PKCS #15 "Cryptographic Token Information Standard" version 1.0, RSA Laboratories, April 1999
URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[33]
RFC 2510 Internet X.509 Public Key Infrastructure January 1999.

[34]
Connected Limited Device configuration, J2ME version 1.0, http://java.sun.com/aboutJava/communityprocess/final/jsr030/index.html
[35]
Mobile Information Device Profile, J2ME version 1.0, http://java.sun.com/aboutJava/communityprocess/final/jsr037/index.html
[36]
eXtensible Markup Language (XML) 1.0, W3C Recommendation.
URL: http://www.w3.org/XML

[37]
Resource Definition Framework (RDF) Model and Syntax, W3C Recommendation.
URL: http://www.w3.org/RDF

[38]
UML Partners: Unified Modelling Language. URL: http://www.omg.org.

[39]
3G TS 31.102: "Universal Mobile Telecommunications System (UMTS); Characteristics of the USIM applications".

[40]
RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

[41]
RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999.

[42]
Description of the "JAR Manifest" file encoding, Sun Microsystems. URL: http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html
[43]
RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile. R. Housley, W. Ford, W. Polk, D. Solo. January 1999.

[44]
3GPP TS 21.905: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications.

[45]
Common Language Infrastructure, ECMA draft. URL : http://www.ecmadoc.net/docfiles/TC39-g3/2001/2001tg3-000.HTM. Mirrors of current drafts can be found at http://msdn.microsoft.com/net/ecma/, http://developer.intel.com/software/idap/ecma/ or http://devresource.hp.com/devresource/Docs/TechPapers/CSharp/CSharpMirror.html
 [46]
Simple Object Access Protocol version 1.1, (SOAP), URL : http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document the following definitions apply:

administrator: The administrator of the MExE device is the entity which has the control of the third party trusted domain, and all resources associated with the domain. The administrator of the MExE device could be the user, the operator, the manufacturer, the service provider, or a third party as designated by the owner of the MExE device.

best effort QoS (Quality of Service): The best effort QoS refers to the lowest of all QoS traffic classes. If the guaranteed QoS cannot be delivered, the bearer network delivers the QoS which can also be called best effort QoS [28].
certificate: An entity that contains the issuer's public key, identification of the issuer, identification of the signer, and possibly other relevant information. Also, a certificate contains a signed hash of the contents. The signer can be a 3rd. party other than the issuer.

delivered QoS: Actual QoS parameter values with which the content was delivered over the lifetime of a QoS session [28].

fine grain: Refers to the capabilities of the Java security system to allow applications, sections of code or Java classes to be assigned permissions to perform a specific set of privileged operations. The smallest programming element that can be given permission attributes is a Java class [19].

key pair: Key pairs are matching private and public keys. If a block of data is encrypted using the private key, the public key from the pair can be used to decrypt it. The private key is never divulged to any other party, but the public key is available, e.g. in a certificate.

Operator: The term operator as used in this specification refers to the term Home Environment, defined as "Home Environment: The home environment is responsible for enabling a user to obtain UMTS services in a consistent manner regardless of the user’s location or terminal used (within the limitations of the serving network and current terminal)" in [44].

negotiated QoS: In response to a QoS request, the network shall negotiate each QoS attribute to a level that is in accordance with the available network resources. After QoS negotiation, the bearer network shall always attempt to provide adequate resources to support all of the negotiated QoS profiles [31].
personal certificate: This is a certificate loaded by the user or a user application which is limited to the application that it is intended for, and is not a MExE Certificate. E.g. an e-mail application could load certificates for its usage. Personal certificates are out of scope for MExE.

phonebook: A phonebook is a dataset of personal or entity attributes. The simplest form is a set of name-number pairs as defined by GSM SIMs. A phonebook may also be supported on a (U)SIM.
MExE: MExE (Mobile Execution Environment) is defined in detail in this document, but the scope of MExE does not include the operating system, or the manufacturer’s execution environment.
MExE API: MExE API consists of interfaces present in the MExE device and exposed to MExE executables. The APIs which are outside of the scope of this specification, are not part of MExE API.
MExE certificate: This is a certificate used in the realisation of MExE security domains. A MExE Certificate can be used to verify downloaded MExE executables. Use of the word "certificate" in this document implies a MExE certificate. Other varieties of certificate will be explicitly qualified as a e.g. "Personal Certificate".

MExE device: a UE (User Equipment) which supports MExE functionality in the ME (Mobile Equipment). The implementation of MExE shall be in the same physical device as the MT (Mobile Termination). Implementation of MExE functionality in the TE (Terminal Equipment) outside of the physical device containing the MT (Mobile Termination) is for further study.

MExE executable: An executable is an applet, application, or executable content, which conforms to the MExE specification and may execute on the MExE device.

MExE Java VM: This is a standard Java virtual machine used to execute MExE Java applets and applications.

MExE native library: This is a downloaded native library that can be accessed by MExE executables.

MExE Server: a node supporting MExE services in the MExE service environment. The MExE server may be a web or WAP server providing services for users to download MExE executables. MExE server is not necessarily a special network element but may utilize the normal Internet service environment.

MExE-(U)SIM: A (U)SIM that is capable of storing a security certificate that is accessible using standard mechanisms.

MIDP application: A MIDP application, or “MIDlet,” is one that uses only the APIs defined by the MIDP and CLDC specifications.

MIDlet suite: A collection of MIDP Applications, or MIDlets packaged together and share resources within the context of a single Java Virtual Machine.

owner: An owner of the MExE device. An owner could be a user, operator (e.g. where the MExE device is obtained as part of a subscription and the cost of the MExE device is subsidised), service provider, or a third party (e.g. the MExE device is owned by the user’s company and this company wishes to control how the MExE device is used).

power up event: An abstract event that occurs when the MExE device is cold started (i.e. switched on).

QoS session: Lifetime of PDP context. The period between the opening and closing of a network connection whose characteristics are defined by a QoS profile. Multiple QoS sessions may exist, each with a different QoS profile [28].

QoS profile: A QoS profile comprises of a number of QoS parameters. A QoS profile is associated with each QoS session. The QoS profile defines the performance expectations placed on the bearer network [28].

requested QoS: A QoS profile is requested at the beginning of a QoS session. QoS modification requests are also possible during the lifetime of a QoS session [28], [31].

sandbox: A sandbox is a safe area to run Java code. Untrusted Java code executing in a sandbox has access to only certain resources [18].

service: A service (which may consist of an application or applet, and its related content) is a set of functions offered to a user by an organisation, and may be performed on the MExE device and/or remotely.

service name: An identifier associated with a service, which could be a string, a fully qualified Java class name, a unique URI or other identifier.

session: The period between the launching of a MExE executable and its execution termination. A WAP-session is established between the mobile and the WAP Gateway. The duration of a WAP-session can range from a second to years. The WAP-session can be associated with a particular subscription in the WAP Gateway.
signature: "Signing" is the process of encrypting a hash of the data using a private key. If the signature can be decrypted using the public key, then the signature is valid.

signed JAR file: Archives of Java classes or data that contain signatures that also include a way to identify the signer in the manifest [42]. (The Manifest contains a file which has attributes defined in it.)

subscribed QoS: The network will not grant a QoS greater than that subscribed. The QoS profile subscription parameters are held in the HLR. An end user may have several QoS subscriptions. For security and the prevention of damage to the network, the end user cannot directly modify the QoS subscription profile data [31].

user: The user of the MExE device.

Further definitions specific to MExE are given in 3GPP TS 22.057 (MExE stage 1) [2].

3.2
Abbreviations

For the purposes of the present document the following abbreviations apply:

AA
Attribute Authority
API
Application Programming Interface

APDU
Application protocol data unit

CA
Certification Authority

CC/PP
Composite Capability/Preference Profiles

Diff-serv
Differentiated Services

CGI
Common Gateway Interface

CCM
Certificate Configuration Message

CLDC
Connected Limited Device Configuration
CLI
Common Language Infrastructure
CP-Admin
Certificate Present (in the MExE (U)SIM) - Administrator

CP-TP
Certificate Present (in the MExE (U)SIM) - Third Party

DHCP
Dynamic Host Configuration Protocol

GSM
Global System for Mobile Communication

GPRS
General Packet Radio Service

HTTP
HyperText Transfer Protocol

HTTPS
HyperText Transport Protocol Secure (https is http/1.1 over SSL, i.e. port 443)

IETF
Internet Engineering Task Force

IP
Internet Protocol

JAD
Java Application Descriptor

JAM
Java Application Manager

J2ME
Java 2 Micro Edition

J2SE
Java 2 Standard Edition

JNDI
Java Naming Directory Interface

JTAPI
Java Telephony Application Programming Interface

JAR file
Java Archive File

JVM
Java Virtual Machine

KVM
K Virtual Machine

ME
Mobile Equipment

MIDP
Mobile Information Device Profile

MIDlet
MIDP Application

MMI
Man-Machine Interface

MSE
MExE Service Environment

MT
Mobile Termination

OCF
OpenCard Framework

OEM
Original Equipment Manufacturer

QoS
Quality of Service

PDP
Packet Data Protocol

RDF
Resource Description Format

RFC
Request For Comments

SAP
Service Access Point

SMS
Short Message Service
SOAP
Simple Object Access Protocol
SSL
Secure Socket Layer

TE
Terminal Equipment

TLS
Transport Layer Security

TP
Third Party

UDP
User Datagram Protocol

UE
User Equipment

UI
User Interface

UMTS
Universal Mobile Telecommunications System

URL
Uniform Resource Locator

URI
Uniform Resource Identifier

USSD
Unstructured Supplementary Service Data

VM
Virtual Machine

WAE
Wireless Application Environment

WAP
Wireless Application Protocol

WDP
Wireless Datagram Protocol
WMLS
Wireless Markup Language Script
WSP
Wireless Session Protocol

WTA
Wireless Telephony Applications

WTAI
Wireless Telephony Applications Interface

WTLS
Wireless Transport Layer Security

WTP
Wireless Transaction Protocol

WWW
World Wide Web

Further abbreviations are given in 3GPP TS 22.057 (MExE stage 1) [2] and GSM 01.04 [1].

4
Generic MExE aspects

Support of at least one MExE classmark is mandatory. A MExE device may also include optional support for applications from any other MExE classmark (refer to subclause 4.4).

This section defines the common aspects of all MExE compliant devices, independent of MExE technology.

Considering the wide and diverse range of current and future technology and devices that (will) use wireless communication and provide services based thereon a one-size-fits-all approach is unrealistic. Instead the present document categorises devices by giving them different MExE classmarks. In this specification the following MExE classmarks are defined:

· MExE classmark 1 - based on WAP (Wireless Application Protocol) [6] - requires limited input and output facilities (e.g. as simple as a 3 lines by 15 characters display and a numeric keypad) on the client side, and is designed to provide quick and cheap information access even over narrow and slow data connections.

· MExE classmark 2 - based on PersonalJava [3] - provides and utilises a run-time system requiring more processing, storage, display and network resources, but supports more powerful applications and more flexible MMIs.

· MExE classmark 3 – based on J2ME CLDC and MIDP environment [34,35] – supports Java applications running on resource constrained devices.

· MExE classmark 4 – based on Common Language Infrastructure [45] Compact Profile – supports CLI based applications running on a broad range of connected devices.
Content negotiation allows for flexible choice of formats available from a server or adaptation of a service to the actual classmark of a specific client device.

Bi-directional capability negotiation between the MExE Service Environment and MExE device (including MExE classmark), supports the transfer of capabilities between the client and the server.

4.1
MExE classmark 1 (WAP environment)

Classmark 1 MExE devices are based on Wireless Application protocol (WAP).

The Wireless Application Protocol is a standard to present and deliver wireless information and telephony services on mobile phones as well as other wireless terminals. Supporting mandatory features of WAP, WAP enabled devices provide access to the World Wide Web based content for small mobile devices.

4.2
MExE classmark 2 (PersonalJava environment)

Classmark 2 specifies Personal Java enabled devices with the addition of the JavaPhone API.

The Personal Java[3] application environment is the standard Java environment optimised for consumer electronic devices designed to support World Wide Web content including Java applets. The Personal Java API is a feature level subset of J2SE with some Java packages optional and some API modifications necessary for the needs of small portable devices (for example an optimised version of the Abstract Windowing Toolkit targeted to small displays).

JavaPhone[4] is a vertical extension to the Personal Java platform that defines APIs for telephony control, messaging, address book and calendar information, etc.

4.3 MExE classmark 3 (J2ME CLDC environment)

Classmark 3 MExE devices are based on the Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

Java 2 Micro Edition (J2ME) is a version of the Java 2 platform targeted at consumer electronics and embedded devices. CLDC consists of a virtual machine and a set of APIs suitable for providing tailored runtime environments. The J2ME CLDC is targeted at resource constrained connected devices (e.g. memory size, processor speed etc.).
4.4 MExE classmark 4 (CLI Compact environment)

Classmark 4 specifies CLI Compact Profile enabled devices.

The CLI [45] environment is a programming language neutral, OS and CPU portable environment. The CLI can support applications and services written in a wide range of programming languages, for example Visual Basic, ECMAScript and C#. The CLI Compact Profile specifies a minimal set of class libraries, supporting common runtime library features as well as web services infrastructure, including HTTP[9], TCP/IP, XML[36] & SOAP[46]. Such devices not only may have limited memory and CPU capability, but also limited (or no) display.
4.5
Multiple classmark support

Support of multiple MExE classmarks on a MExE device is optional.

A given MExE Classmark identifies support by a MExE device for a defined level of MExE functionality as defined by that classmark. Support of MExE classmarks by a MExE device shall enable flexible support of MExE functionality. A MExE device may support any multiple combination of MExE classmarks.

The support of any other functionality by a MExE device is also possible, and is out of scope of this specification.

NOTE:
Some implementation issues may arise from the multiple support of classmarks on a device, e.g.:

1)
In conforming to all of the requirements, how are mandatory requirements in one classmark compatible with optional requirements for another?

2)
With kJava and pJava on one device, MIDP can be on top of a JavaVM. Which of the classmarks will it be then? In conforming with both Classmark 2 and 3 requirements, are 2 VMs required in one device?

4.5.1
Classmark 1 service support in non-Classmark 1 MExE devices

Support of Classmark 1 executables in non-classmark 1 MExE devices is optional.

To allow access to services designed for MExE Classmark 1 devices, MExE devices other than Classmark 1 will need to support full or a subset of WAP protocol as identified below. Due to the fast evolution of new technologies, support of WAP in Classmarks other than Classmark 1 is not mandated by MExE specification. However WAP is a possibility for the integrity of service provisioning as well as quick access to information by feature rich devices (e.g. Java devices).

If Classmark 1 services are supported by non-Classmark 1 devices, Classmark 1 services shall execute in the same manner as they execute in a MExE Classmark 1 device. For that purpose, a MExE non-Classmark 1 device shall comply with data profile class (Class C) of WAP Class Conformance Requirement Specification [6].

NOTE:
A more specific reference to the WAP Class Conformance Requirement Specification shall be supplied when available.

4.5.2
Classmark 2 service support in non-Classmark 2 MExE devices

Support of Classmark 2 executables in non-classmark 2 MExE devices is optional.

If Classmark 2 services are supported by non-Classmark 2 devices, Classmark 2 services shall execute in the same manner as they execute in a MExE Classmark 2 device.

4.5.3
Classmark 3 service support in non-Classmark 3 MExE devices

Support of Classmark 3 executables in non-classmark 3 MExE devices is optional.

If Classmark 3 services are supported by non-Classmark 3 devices, Classmark 3 services shall execute in the same manner as they execute in a MExE Classmark 3 device.
4.5.4
Classmark 4 service support in non-Classmark 4 MExE devices

Support of Classmark 4 executables in non-classmark 4 MExE devices is optional.

If Classmark 4 services are supported by non-Classmark 4 devices, Classmark 4 services shall execute in the same manner as they execute in a MExE Classmark 4 UE.
4.6
High level architecture

The following architectural model shows an example of how standardised transport mechanisms are used to transfer MExE services between the MExE device and the MExE service environment, or to support the interaction between two MExE devices executing a MExE service.

The MExE service environment could, as shown in Figure 1 "Generic MExE architecture", consist of several service nodes each providing MExE services that can be transferred to the MExE device using mechanisms such as (but not limited to) fixed/mobile/cordless network protocols, Bluetooth, infrared, serial links, wireless optimised protocols, standard Internet protocols. These service nodes may exist in the circuit switched domain, packet switched domain, IP multimedia core network subsystem or in the internet space (e.g. SMS service centres, multimedia messaging servers, internet servers etc.). The MExE service environment may also include a proxy server to translate content defined in standard Internet protocols into their wireless optimised derivatives.

For the versatile support of MExE services, the wireless network shall provide the MExE device with access to a range of bearer services on the radio interface to support application control and transfer from the MExE service environment. As MExE also applies to fixed and cordless environments, MExE device may also access MExE services via non-wireless access mechanisms.

[image: image1.wmf]Voice

-

based access

Data services

Supplementary services

Multimedia services

-

operator / handset

manufacturer / 3

rd

party

services

-

multimedia services

-

multimedia messaging

services

-

SMS messaging

-

notification services

-

fax services

-

store/forward services

-

e

-

mail/v

-

mail services

-

WWW access and

content

-

services download

-

content download

-

handset upgrades

-

synchronisation

services

-

backup services

-

user to user services

-

data broadcast

-

protocol translations

-

bearer control

-

etc.

-

operator / handset

manufacturer / 3

rd

party

services

-

multimedia services

-

multimedia messaging

services

-

SMS messaging

-

notification services

-

fax services

-

store/forward services

-

e

-

mail/v

-

mail services

-

WWW access and

content

-

services download

-

content download

-

handset upgrades

-

synchronisation

services

-

backup services

-

user to user services

-

data broadcast

-

protocol translations

-

bearer control

-

etc.

Internet

services

Multimedia

services

Circuit/packet

switched

services

MExE Service Environment

MExE device

Access network

(e.g. wireless, fixed, cordless)

MExE device

Figure 1: Generic MExE architecture

4.7
Capability and content negotiation

Support of capability negotiation for all MExE devices is mandatory, while support of content negotiation is optional.

Interaction between the MExE device and the MSE for WWW/WAP browsing and service discovery shall be supported by the use of the hypertext transfer protocol HTTP/1.1 [9], or an HTTP/1.1 derived protocol (e.g. WSP as defined in Wireless Application Protocol [6]). Communication between the MExE device and the MSE supports:

· Capability negotiation

The MExE device connects to the MSE by using HTTP/1.1 or an HTTP/1.1 derived protocol. Capability negotiation between the MExE device and the MSE only takes place for the first time after the MExE device has connected to the MSE, and the MSE is informed about the MExE device. Without this first initial contact from the MExE device, the MSE has no knowledge of the MExE device. After the first initial contact the MSE may connect to the MExE device by using HTTP/1.1 or an HTTP/1.1 derived protocol.

Capability negotiation represents the mechanism by which the MExE device and the MSE interact to inform each other of the specific mechanisms, capabilities and support which each is able to provide or support within the scope of a MExE service interaction. The capability negotiation normally takes place prior to any content transfer between the two entities.

Capability negotiation is used by the MExE device to inform the MSE of its capabilities. The MExE device may be informed by the MSE of its use of the MExE device’s capabilities. The MExE device may also spontaneously inform the MSE of its capabilities (i.e. following a change in MExE support, such as removal of MExE device from a docking station with its keyboard, mouse and monitor). A subset of characteristics which may be transferred between the MExE device and the MSE during the capability negotiation are identified in subclause 4.6.1 "Capability negotiation characteristics".

· Content negotiation

Content negotiation represents the means by which the MExE device and the MSE inform each other of the requested and available form of content. If needed, the content negotiation may take place following capability negotiation between the two. The methods for content negotiation are the basic HTTP/1.1. or WSP methods explained in [9] and [6].

Content negotiation is used to select the best representation of an entity when there are multiple representations of the entity available from the MSE. The entity (e.g. a service, an image, etc) is located behind a URI, and the application in the MExE device connects to the URI by using HTTP/1.1 or an HTTP/1.1 derived protocol. The best representation of an entity can be decided by the server (server-driven negotiation) or by the client application (agent-driven negotiation).

Both the capability and the content negotiation has the same purpose: to optimise the content according to client’s capabilities. The term "content negotiation" has been used e.g. in the HTTP specification and the HTTP/1.1. and the WSP contain headers to perform the content negotiation. However, the capability negotiation in MExE aims at extending the basic HTTP and WSP methods for content negotiation by using CC/PP framework.

The content negotiation transferred between the MExE device and the MSE is identified in subclause 4.6.5 "Client content capability report" onwards.

4.7.1
Capability negotiation characteristics

The method for capability negotiation is based on the Composite Capability/ Preferences Profiles (CC/PP) specification made by W3C, [16]. The properties and the actual schema, Table 1"UAProf properties supported by MExE", is based on the WAP UAProf specification [17]. The CC/PP framework is intended to provide an efficient mechanism for enabling enhanced content and service negotiation through a standardised format for user agent profiles. The use of Resource Description Framework (RDF) [37] in CC/PP allows for interoperable encoding of the profile metadata in XML[36] and supports multiple vocabularies to provide for future extensibility. The WAP UAProf is based on the CC/PP framework. The purpose of the UAProf outlined in this document is to specify:

· an RDF based schema and vocabulary for CC/PP in the context of the WAP UAProf that includes the class definitions and semantics of attributes described in a user agent profile, and

· guidelines for schema extensibility to support a composite profile that enables future additions to the vocabulary and schema.

Not all capabilities have to be reported in the request to the server but instead, the client may point to URL(s) where the server may fetch the properties. An MSE may, or may not, use the client capability information.

The generic set of capabilities which may be negotiated between the client and the server consists of the subsequently identified properties in the UAProf schema, [17].

A MExE device shall support the properties in the UAProf schema for capability negotiation defined in Table 1 "UAProf properties supported by MExE" as "mandated properties".

It is recommended that MExE device supports the properties defined in the Table 1"UAProf properties supported by MExE" as "recommended properties". It is not required that a MExE device shall send all the "recommended properties", when sending a request, however it should be possible for the MExE device to send one or more of the "recommended properties", with user permission.

The mandatory and recommended properties in Table 1"UAProf properties supported by MExE" are specified in WAP UAProf [17].

Support of the properties of the UAProf schema in this specification shall not be limited to those listed in Table 1 "UAProf properties supported by MExE". A MExE device may support any other properties from WAP UAProf specification [17].

Table 1: UAProf properties supported by MExE

	Mandated Properties

	Attribute
	Description
	
	Type
	Sample

	MexeClassmarks
	List of supported MExE classmarks *

	
	Literal (bag)
	"1", "2", "3"

	MexeSpec
	The first two digits of the MExE Specification version that the MExE device conforms to
	
	Literal
	"3.3", "4.1"

	MexeSecureDomains

	Indicates whether the device supports the MExE security domains
	
	Boolean
	"Yes", "No"

	Recommended Properties

	Vendor
	MExE device vendor
	
	Literal
	"Lexus", "Ford"

	Model
	MExE device model number
	
	Literal
	"Mustang 90", "Q10"

	SoftwareNumber
	The number of the MExE device specific software.
	
	Literal
	"1.0", "2.7.0"

	ScreenSize
	The size of the MExE device's screen in units of pixels.
	
	Dimension
	"160x160", "640x480"

	ScreenSizeChar
	Size of the MExE device's screen in units of characters (based on the standard font).
	
	Dimension
	"12x4", "16x8"

	ColorCapable
	Whether the MExE device display supports colour
	
	Boolean
	"Yes", "No"

	AudioInputEncoder
	List of audio input encoders supported by the MExE device
	
	Literal (bag)
	"G.711"

	VideoInputEncoder
	List of video input encoders supported by the MExE device
	
	Literal (bag)
	"MPEG-1", "MPEG-2", "H.261"

	PointingResolution
	Type of resolution of the pointing accessory supported by the MExE device
	
	Literal
	"Character", "Line", "Pixel"

	CcppAccept-Language
	List of preferred document languages
	
	Literal (bag)
	"zh-CN" "en fr"

	Keyboard
	Type of keyboard supported by the MExE device as an indicator of ease of text entry.
	
	Literal
	"Disambiguating", "Qwerty", "PhoneKeypad"

	SupportedBearers
	List of bearers supported by the MExE device.
	
	Literal (Bag)
	"GPRS", "GUTS", "SMS", CSD", "USSD"

	JavaPlatform
	List of Java platforms and profiles installed on the device
	
	Literal (Bag)
	"Pjava/1.1.3-compatible", "MIDP1.0-compatible", "J2SE/1.0-compatible"

	Proposed New Recommended Property

	CLIPlatform +
	List of CLI profiles installed on the device
	
	Literal (Bag)
	“CLI-Compact/1.0-compatible”, “CLI-Standard/1.0-compatible”

	* NOTE:
In pre-release 4.0.0 specifications the attribute MexeClassmark (as opposed to MexeClassmarks) which was a literal (as opposed to as Literal, Bag) indicating only one MExE classmark was notified.

	+ NOTE: The property name “CLIPlatform” is proposed as a placeholder. Once a decision has been made the final property name will be proposed to UAProf for UAProf approval.

Generally, the combination of user profile and MExE device logic will determine the information sent in the capability negotiation from the MExE device to the MExE Service Environment. As an example, for the support of VideoInputEncoder information the user’s profile controls if and when VideoInputEncoder information may be sent to the MExE Service Environment (e.g. never sent, always sent, only after user confirmation).

The capability negotiation process shall be used by the client to permit transfer of capabilities from the client to the server. By transferring its capabilities, the client will support efficient use of resources both over the radio interface as well as in the client or server. Capability negotiation shall be performed prior to transfer over the radio interface to verify as far as possible the ability of the client to support any services to be downloaded.

In order to transfer the capability information between the MExE device and the MSE, CC/PP method is used with the schema defined in the WAP UAProf working group.

4.7.2
CC/PP over WSP (Classmark 1)

In Classmark 1 the CC/PP is carried over by using CC/PP over WSP, [17].

4.7.3
CC/PP over HTTP (Classmark 2)

In Classmark 2 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].

4.7.4
Transfer of capability negotiation information in Classmark 3

In Classmark 3 the CC/PP is carried over by using CC/PP over HTTP, [15] and optionally CC/PP over WSP, [17].

Also MIDP itself provides a simple mechanism for applications to indicate the capabilities they require. The Java Application Descriptor File (JAD), which is a file that can be stored and downloaded separately to the application itself, contains information such as application name, version number, JAR file size, data storage requirements etc. The Application Descriptor can accompany the JAR file and can be used to ensure prior to the actual application download that the application suits the MExE device. The JAD file is described in more details in the section 6.2.2.2.2 " MID Applications (MIDlet)".
4.7.5
CC/PP over HTTP or WSP (Classmark 4)

In Classmark 4 the CC/PP is carried over by using CC/PP over HTTP,[15] and optionally CC/PP over WSP, [17]
4.7.6
Client content capability report

The client may perform content negotiation capabilities to the server by using appropriate HTTP/1.1 or WSP request headers. The following methods are available for content negotiation:

-
Client software (product): User-Agent header;

-
MIME media types: Accept header;

-
Character set: Accept-Charset header;

-
Content encoding: Accept-Encoding header;

-
Language: Accept-Language header.

There is no need for MExE to specify any tokens for content negotiation, as these headers are already defined in HTTP and WSP. The formats for these headers are specified in [9] and [6].

4.7.7
Server role in capability negotiation

The server may request the capabilities of a client whenever required, and shall enquire of the client’s capabilities prior to making each transaction resulting in a set of transfers to the client; the characteristics which may be reported in the client capability report are identified in the list above.

In server-driven negotiation the server signals to the client that the response entity was selected from a set of available representation.

4.7.8
Client-driven negotiation

If the server cannot specify an optimal version for the client basing on the CC/PP sent over to the server, the server may also indicate to client which type of versions are available and let the client make the decision. This method is already available in HTTP1.1. In client-driven negotiation the client selects the best representation after having received an initial response from the server.

4.8
User profile

Support of the user profile is optional.

NOTE:
The user profile is not yet specified in an interoperable way. Support of the user profile will be defined when it has been fully specified in a fully interoperable way.

The user profile (which may consist of sub user profiles for a user) contains the characterisation of the MExE device as defined by the user and service provider. Further, it is also possible for multiple users of a MExE device to each have their own user profiles. The user profile is not unique to the MExE device, and this clause identifies the usage and content of the user profile from a MExE perspective only, and does not identify the generic support of user profiles in general. Refer to UMTS 22.101 [14] for further details on the user profile.

4.8.1
Location of, access to, and security of, the user profile

As multiple user profiles may be defined, the user is able to set up or receive calls/connections associated with different user profiles simultaneously by securely activating a user profile (with each user profile being associated with at least one unique identifier). Refer to Table 6 "Security domains and actions" in the Security clause 8.2 “MExE executable permissions” for further details on user profile activation.

The user’s characterisation of the MExE device in the user profile may be modified at any time by the user and the service provider, and changes affected at the earliest possible opportunity.

The security clause shall apply to all user profiles at all times, whether activated or not

The user profile shall be securely managed by the MExE device, and stored in a secure area of the MExE device (either (U)SIM or ME). The service provider may also retain the user profile in the network for service optimisation. User private data in the user profile may also be stored in the network, however only with the user permission.

The support of more than one user profile is not mandatory.

4.8.2
User profile and capability negotiation relationship

The user profile contains the user’s preferences. Support of the user’s preferences will depend on the capabilities of the MExE device. If the capabilities change, then the degree of support of the user’s preferences may change too.

The capability negotiation between the MExE device and the MSE, as shown in Figure 2 "Model of user profile and capability relationship", contains those user preferences which the MExE device is able to support.

In this way the MSE will serve a MExE device with the lowest common denominator of the users preferences, the MExE device capabilities and the provided service characteristics and support the user’s preferences to the maximum degree.

[image: image2.wmf]

MSE

capability

negotiation

store / access

user profile

(ME,(U)SIM,MSE)

user profile

settings

User

Figure 2: Model of user profile and capability relationship

4.8.3
Support of the user profile

The user profile acts as a repository (which is always available in the MExE device) defining the MExE device behaviour.

MExE preferences and personalisation are supported in the user profile (e.g. UMTS portability and support of VHE defined in [12] and other 22-series specifications), which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

MExE preferences and personalisation may not only be recorded directly in the user profile as supported by CC/PP (the direct referencing mechanism), but may also be retrieved from a URL (the indirect referencing mechanism).

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of MExE preferences and personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE preferences and personalisation.

The set of preferences which are supported in the user profile consists of the following:

-
user interface personalisation

-
the user’s personalisation of the user interface.

-
service personalisation and management

-
the user’s generic service management information.

The coding and presentation of the above characteristics in the user profile is defined by the Composite Capability/Preference Profile (CC/PP) specification from W3C [16], and referenced by the MExE capability negotiation in subclause 4.6 "Capability and content negotiation".

The following user preference information is supported by UAProf [17]. A MExE device shall support the following property in Table 2 "Mandatory UAProf properties" of the UAProf schema for user preference information:

Table 2: Mandatory UAProf properties

	Attribute
	Description
	Resolution
Rule
	Type
	Sample Values

	AcceptDownloadableSoftware
	Indicates the user's preference on whether to accept downloadable software
	Locked
	Boolean
	"Yes", "No"

It is recommended that a MExE device supports the following UAProf properties in Table 3 "Recommended UAProf properties":

Table 3: Recommended UAProf properties

	Attribute
	Description
	Resolution
Rule
	Type
	Sample

	CcppAccept-Language
	User's preference for document language. Property value is a list of natural languages, where each item in the list is the name of a language as defined by RFC 1766.
	Append
	Literal (Bag)
	"zh-CN", "en fr"

	PreferenceForFrames
	User's preference for displaying frames
	Locked
	Boolean
	"Yes", "No"

	WapPushMsgPriority
	User's settings for WAP Push message priorities
	Locked
	Literal
	"critical", "low", "none"

Also, there is in UAProf [17] support for indicating MExE device's capabilities related to UI features, e.g. capability for displaying images or frames, as well as capability information about input and output methods.

4.8.4
Virtual home environment

Virtual Home Environment (VHE) (see [11] and [12]) is defined as a concept for personalised service portability across network boundaries and between terminals. MExE is identified by VHE as one of the mechanisms which may be used to support VHE.

The characteristics of the VHE (to reflect any user or home environment modification of the user’s VHE) shall be stored as part of the user profile.

4.9
User interface personalisation

Support of user interface personalisation as detailed in this subclause is optional.

The MExE device interface consists of the buttons, menus, screens and MMI as designed and provided by the MExE device manufacturer; the nature of this MExE device interface is naturally evolving, MExE device specific and proprietary to the individual manufacturers of the industry. This interface is the one normally seen by the user in normal operation of his MExE device. This specification does not place any requirements or limitations on the individual manufacturers’ MExE device interface.

The MExE MMI, in turn, is the interface available to the user to support MExE services and functionality on the MExE device. The nature of the MExE MMI interface, like the normal MExE device interface described above, is not standardised in any way, to allow for manufacturer innovation, cater for evolving market needs, and permit manufacturer differentiation. The MExE MMI, depending on different manufacturer implementations, may consist of the normal MExE device interface, the normal MExE device interface with modifications, a different interface to the normal MExE device interface, or some combinations thereof etc. MExE services operate within, and using the capabilities of, the MExE MMI.

User interface personalisation consists of two parts. The first part refers to the user’s ability to request, and verify, the preferred changes to the user interface; thus the user’s preferences, as supported by the specific MExE device, require to be recorded. The second part refers to the MExE device’s support of the user’s preferences for the interface, within the capabilities of an MExE device. By defining the user interface personalisation to consist of two stages, the preferences which have been recorded by the user may be transferred (as part of the user profile, e.g. CcppAccept-Language and/or PreferenceForFrames), and thereby provide portability of the user’s preferences.

4.9.1
MExE user interface personalisation

Personalisation of the user interface offers the MExE Service Environment and or the user, the ability to inform the MExE device of the desired extent of personalisation. All support of the user interface personalisation is optional, not mandatory on any class of MExE device, and subject to the capabilities of the MExE device. Depending on the capability of the MExE device, the personalisation may be fully supported, partially supported, interpreted or ignored.

Personalisation of the user interface is not restricted to modifying the appearance of the MMI, but also the modification of MMI parameters (e.g. programming of the voicemail number). The user’s personalisation of the interface is retained as part of the user profile.

4.9.2
Support of MExE user interface personalisation

MExE user interface personalisation is supported via the preferences in the user profile, which in turn is based on the Composite Capability/Preference Profile (CC/PP) specification from W3C [16].

User interface personalisation may not only be reported in the CC/PP request to the server (the direct referencing mechanism), but indeed the client may point to a URL (the indirect referencing mechanism) from where the user interface personalisation preferences may be retrieved.

Generally, the user profile’s CC/PP framework provides the mechanism for the standardised format of preferences, and its use of Resource Description Framework (RDF) permits the interoperable encoding of user interface personalisation. Future extensions will be supported by the W3C mechanism, allowing for evolution and development of MExE user interface personalisation.

4.10
Provisioning and management of services

Support of management of services as detailed in this subclause is mandatory.

The MExE device shall be capable of supporting services in a standard (WAP or Java) execution environment independently of the MExE device manufacturer. Service provisioning provides a standardised method for a MExE device to discover and install services. It includes download and installation of the service's client application. Once discovered and delivered, services are managed by the user. Management of services provides the user with the capability to:

-
control the transfer of services;

-
install and configure services ;

-
control the execution of services;

-
terminate or suspend executing services

-
delete services

on his MExE device.

4.10.1
Service discovery

A MExE user is able to request (or be informed about) the range of MExE services available from the MExE server to which it is connected. To be able to interactively discover the services via standard mechanisms such as WSP or HTTP, a MExE device should feature a browser which is a common tool for service discovery. The request, and transfer of information on MExE services from the MExE server is supported by the use of the capability negotiation mechanism.

All services available in the network continue to be available to the user, in addition to MExE services.

An example of an alternative means of receiving information on MExE services, is the use of an application on the MExE device which the user interrogates to provide services information (from various sources), and which in turn then obtains such information and presents it to the user. Such an example is not subject to standardisation.

4.10.2
Service transfer

The standardisation of the transferral of MExE services to a MExE device is outside the scope of this specification.

Examples of possible ways of supporting service transfer are from a MExE server or from another user MExE device (e.g. using wireless and standard protocols and mechanisms such as HTTP, FTP, proprietary protocols and mechanisms, via a serial link, infrared, Bluetooth data exchange, etc.).

The above examples are not exhaustive. Regardless of the means of transfer, all services are required to conform with the security requirements in clause 8 "Security".

4.10.3
Service installation and configuration

Installation of a service may result in changes to the MExE device user interface using icons, browsers or menus as applicable depending on the capability of the MExE device to support them. The name of the installed service may be contained in the package in which it was received (i.e. a JAR file or script), assigned by the user during configuration, or some other means. After installation, the service may be configured. Configuration of the service includes setting the user permissions that apply to the service (e.g. blanket permission for call origination). Configuration may be performed automatically based on the user profile.

The user controls whether a service transferred to the MExE device is automatically configured and installed in the MExE device. If automatic configuration and/or installation is enabled, the user is notified once it is completed. In the event that there is no authorisation for the automatic installation and/or configuration of a transferred service, the user is notified.

Subsequent user modification of a service’s configuration (e.g. by modification of user profile settings) shall take effect at the earliest possible opportunity thereafter.

4.10.4
Service management

The MExE device shall support the ability to determine which services are transferred to, resident, installed or executing on the MExE device. The information relating to the services shall include the name as a minimum and the version number if available.

The user controls which services are permitted or denied to be transferred, resident, installed, configured or executing on the MExE device via the user profile, e.g. AcceptDownloadableSoftware. The user profile permits characteristics such as security level, identification of specific services etc. to manage services on the MExE device.

4.10.5
Service termination

A MExE device shall support the termination of services.

A service may terminate by itself, or be terminated by the provider of the service or by the user. The user is in charge of the service, except when the service provider may appropriately control the service as part of user support.

The mechanism for terminating a service is out of scope of standardisation and shall be provided on a service by service basis by the provider of the service.

4.10.6
Service deletion

A MExE device shall support the deletion of services.

A service may be deleted (i.e. removed) from the MExE device with the authorisation of the user. The deletion may be initiated by the authoriser of the service or by the user.

4.11
User control of application connections

Support of the user control of application connections is mandatory.

This subclause addresses the generic aspects of connection control supported by both WAP and Java classmark MExE devices.

In order to allow the user to maintain control over connections on his MExE device and the ability to initiate connections, the user shall be able to terminate or suspend any active connection associated with an application in the MExE environment of the MExE device. The user shall be able to obtain information about all connections associated with applications on the MExE device (e.g. requesting information, being informed by the MExE device etc.). Behaviour of the application following termination or suspension of its connection is undefined.

The specific support of connection control by WAP and Java classmark MExE devices is identified in subsequent subclauses, the security aspects of connection control are identified in subclause 8 "Security", and the user control of connection authorisation is identified in 4.7 "User profile".

4.12
Journalling of network events

Support of the journalling of network events is mandatory.

To support the user in monitoring (potentially chargeable) network events initiated by services in the MExE environment, the MExE device shall maintain a record of network events initiated by MExE executables on the MExE device.

Network events for the purposes of journalling, are defined as events which result in the origination of connections by a service in the MExE environment of the MExE device. Examples of such events (any (potentially chargeable) network event initiated by services in the MExE environment) are:

-
Sending an SMS message;

-
Sending an USSD message;

-
Initiating a circuit switched connection;

-
Initiating a packet switched connection;

-
Sending data over a packet switched connection.

The length, format and longevity of the journal is undefined and subject to manufacturers’ discretion.

The journal shall be managed by the MExE device, and not be accessible by MExE executables.

4.13

User notification

Support of user notification is optional.

It is recommended that the MExE device should clearly display an indicator whenever network activity is in progress.

Ideally, this would be an icon on the phone's screen which is displayed whenever the MExE device is sending/receiving SMS, USSD, data call, voice call, or packets.

However, there are certain cases when this indicator need not be displayed, especially if it is obvious by some other means that the MExE device is performing network actions.

4.14

Quality of service

Quality of Service (QoS) [28] is seen by the end user as a measure of the amount of network resources given to an application by the underlying network. The network may employ a number of QoS mechanisms, but the end user / MExE executable is not involved in these. The end user / MExE executable requires an interface into the network QoS through a visible set of standard parameters.

A QoS aware MExE executable may request a QoS from the network at the beginning of a QoS session. Changes in the level of QoS provided shall be notified to the end user / MExE executable. An end user may request a change in the QoS through the MExE device MMI. A MExE executable may have several QoS streams open simultaneously.

The MExE executable shall be able to dynamically request a change in the level of QoS at connection setup request or subsequently during the connection. The end user / MExE executable may receive a rejection to a QoS modification request, upon which the end user / MExE executable must be notified.

The end user's service level QoS subscription parameters are stored in the network, they identify the maximum permissible QoS that a user may negotiate with the network. Several QoS subscriptions may be possible for one user. MExE is neither aware nor able to determine or modify the end user's service level QoS subscriptions.

For MExE devices supporting bearers defined by QoS, the MExE execution environment shall support QoS management. QoS management may be available directly to the MExE executables themselves, or to the MExE environment.

4.15
Core software download

Support of core software download is optional.

Core software download enables the MExE device radio, characteristics and properties to be updated by changing the software in the MExE device. E.g. a new CODEC may be loaded into a MExE device, a new air interface, etc. This process could include the transfer of executable code and software patches over the air.

This updating of core software (e.g. the Software Defined Radio (SDR) concept) can in principle be generically supported within the MExE framework by a MExE service that executes in the manufacturer security domain, and uses handset manufacturer proprietary APIs. Possible scenarios for the support of this functionality include:

-
A MExE service that can be transferred to, and executed in, the manufacturer domain. The service would use manufacturer APIs to perform the software update, radio re-configuration, etc.

-
A core software download application that executes in the manufacturers' domain that acts like a user agent in conjunction with a server to transfer software as needed or requested by the user. The core software download application uses manufacturer APIs to perform the software update, radio re-configuration, etc.

Similar functionality may be supported by a downloaded MExE service using manufacturer's OEM classes. All such OEM classes shall comply with the MExE security requirements in Table 6 "Security domains and actions" and Table 7 "Executable permissions for untrusted MExE executables".
The support of core software download functionality in a MExE device shall only be under the control of the MExE device manufacturer.
5
WAP MExE devices

Support of WAP in a MExE classmark 1 device as detailed in this subclause is mandatory.

WAP MExE devices shall be based on the WAP specifications [6]. In addition to the base specifications in [6], further developments made in the WAP specifications shall form part of this MExE specification.

WAP MExE devices shall implement the WAP version as specified in reference [6], or a later version, under the condition that the version of WAP is backward compatible with the version specified in reference [6].

The existing WAP specification covers security, creation and transfer of WAP executables and content, access, and execution.

5.1
High level architecture

The WAP architecture provides a scaleable and extensible environment for application development for mobile communication devices. This is achieved through a layered design of the entire protocol stack.

The key features of WAP include:

-
Markup language (WML) and a script language (WMLScript) designed to create applications on the small displays of handheld devices. WML does not assume that a QWERTY keyboard or a mouse is available for user input. Unlike the flat structure of HTML documents, WML documents are divided into a set of well defined units of user interactions. One unit of interaction is called a card, and services are created by letting the user navigate back and forth between cards from one or several WML documents. WML has a smaller set of markup tags that makes it more appropriate to implement in handheld devices, than, say, HTML.

-
Light-weight protocol stack to minimise the required bandwidth and to guarantee that a maximum number of wireless network types can run WAP applications. For example, GSM SMS/USSD, circuit switched data (CSD), and GPRS.

-
A framework for Wireless Telephony Applications (WTA) allows access to telephony functionality such as call control, phone book and messaging from within WMLScript scripts. This allows operators to develop telephony applications integrated into WML/WMLScript services.

Since WAP is based on a scalable layered architecture, each layer can develop independently of the others. This makes it possible to switch onto new bearers, to use new transport protocols, without major changes in the other layers.

5.2
Optionality

Mandatory and optional components of WAP are specified in the WAP specifications. Services and applications shall be able to determine the presence of optional parts of the functionality.

5.3
Call control

WAP telephony services are written in WML and WMLScript. The WAP Telephony API (WTAI) exposes telephony functions to service authors as a set of libraries. The WTAI function libraries can be accessed from WML as URIs, and from WMLScript as script functions. The following libraries have been specified:

-
Public library
This includes functions that are available in all networks, and can be provided by any third party service provider; and not only the network operator. The user must acknowledge the function before it is carried out. Functions have been specified, which can be used e.g. to initiate a mobile originated call, send DTMF tones and add phonebook entry.

-
Network Common library
This includes functions that are available in all networks, and can be provided only by the network operator. E.g. functions for advanced call control, accessing the phonebook, and sending and reading network text (SMS) have been specified.

-
Network Specific library
Functions that are only available in certain types of networks, and can be provided only by the network operator. For GSM, e.g. functions for call reject, call hold, call transfer, multiparty, getting location information and sending USSD have been specified.

The WML and WMLScript author uses the WTAI libraries to create web services for mobile phones with telephony capabilities.

Call control shall be performed using WTA.

5.4
Local phonebook
WAP Telephony API (WTAI) is used to access the information stored in the phonebook on the MExE device or the (U)SIM. Phonebook entries consist of name, number and identity. Phonebook entries can be read, written, deleted, and searched for.

5.5
Services
WAP is a general purpose application based on World Wide Web (WWW) technologies and philosophies. Many services can be provided to both WAP clients and traditional WWW clients, from the same server. Services are created based on the same information space. The major difference is the user interface. The user interface of WAP services is realised by the Wireless Markup Language, WML [6], and has a menu tree oriented structure, instead of the traditional flat structure of HTML pages.

Typical WAP services provided to mobile phones may include (this list is not exhaustive):

	‑
News

‑
Weather information

‑
Package Tracking

‑
Stocks
	‑
Telephony Services

‑
Time Tables

‑
Access to corporate databases

‑
Sports

5.5.1
User interface

The user interface of WAP services is realised by the Wireless Markup Language, WML [6]. WML does not define the user interface itself, the implementation of the browser defines how the WML data is presented to the user (e.g. hyperlinks are blue and underlined). The script language, WMLScript [6], may be used to enhance the standard browsing and presentation facilities of WML with behavioural capabilities, and to access the device and its peripheral functionality.

5.5.2
Access points

Services may be hosted on standard HTTP servers and can be created with proven technologies; CGI, Java Servlets. URLs are used to address services.

The WAP network topology is shown in Figure 3 "WAP network topology".

[image: image3.wmf]WAP Gateway

WAP

Client(s)

HTTP/1.1

Server

Databases

Interfaces

Programs for

Interaction &

Dynamic content

Other Servers (e.g. proxies, firewalls)

Internet/intranet

GSM network

Other Network Nodes (e.g SMS-C)

WML

Figure 3: WAP network topology

Mobile phones access services by sending a request with a URI to the WAP gateway. The URI is used to identify the origin server on which the service is available. The request is sent from the mobile phone by the WAP protocols over one of the available bearer networks. The WAP Gateway is a WAP to HTTP/1.1 proxy that translates the WAP request into an HTTP/1.1 request (from binary form to text). The HTTP/1.1 request is passed on to the server identified by the URI.

The HTTP server may have multiple access points to various databases and other services available in the infrastructure network. Once the request has been serviced a response is sent back to the WAP Gateway, which in turn translates it into a WAP response (from text to binary form) and sends it down to the mobile phone.

Note that WAP does not specify anything "behind" the WAP Gateway. However it is assumed that the origin server is an HTTP/1.1 server, and that the WAP Gateway has access to the TCP/IP network on which the origin server is hosted.

5.5.3
Transferring

The core of WSP [6] is a binary version of the Hypertext Transfer Protocol - HTTP/1.1 [9]. The core function of WSP is the same as for HTTP/1.1. A client sends a request to the server using an appropriate request method with a URI and information about the client. The server responds with a status code and possibly (if success) the requested content.

There is a differentiation between an origin server and a WSP server. The origin server is where the content is stored, and the WSP server is where the WSP session terminates. The WSP server is also typically the WAP gateway.

In addition to the basic HTTP/1.1 function, WSP has some functions that can not be found in HTTP/1.1, they are:

-
Session Establishment and Management
Before a request is sent, the WSP client can establish a session with the server. During session establishment the client and server exchange static headers. The header are cached for the duration of the session, thus they need to be sent in every single request within the session. Static headers may be: Accept headers, User-agent header, etc. In addition, capabilities such as supported optional protocol functions, the maximum service data unit the protocol can handle, the maximum number of simultaneously outstanding requests, supported header code pages, etc. can also be exchanged during session establishment.

-
Header encoding
WSP is using a compact binary header encoding to minimise the number of bytes sent over the air.

-
Asynchronous transactions
WSP allows for multiple asynchronous transactions, that is, unordered transactions.

-
Transaction Abort
WSP support abortion of an outstanding transaction.

-
Datagram transport
WSP together with the helper protocol Wireless Transaction Protocol, WTP [9], can run over a datagram transport such as SMS or UDP. The WDP can also be used for non-IP bearers.

-
Push
WSP supports the push of data from server to client. This can be done within and outside of a session. It can be done with and without acknowledgement from the client. Push of indications down to mobile phones is an essential function many wireless applications.

5.5.3.1
WSP and HTTP/1.1 Proxy Function

The WAP Architecture is a client-proxy-server architecture. The client is typically a mobile phone, the data gateway is the WAP Gateway and the server is the origin server (a standard HTTP server). The WAP Gateway translates the binary WSP header into text formatted HTTP/1.1 headers and passes them on to the origin server. In the opposite direction the WAP Gateway translates the text formatted HTTP/1.1 header into binary WSP headers. If the WAP Gateway receives a header it does not recognise it simply passes it on as an unknown header. Unknown headers that are not part of the WSP Header Code page or Extended code pages (negotiated at session establishment) are sent in plain text for the client to interpret as best it can.

6
Java MExE devices

6.1
Classmark 2 MExE devices

Support of PersonalJava in a MExE classmark 2 device as detailed in this subclause is mandatory.

MExE Classmark 2 devices shall be based on the API for Personal Java, which defines the required and optional components of Personal Java /JavaPhone APIs that shall be used to realise a Classmark 2 compliant MExE device.

The APIs primarily define the functions available to a Personal Java based MExE device such that services (specified in the form of Java classes and interfaces) can control such a MExE device in a standardised way.

Many aspects of the MExE Classmark 2 API specification are optional. Services and applications shall be able to determine the presence of optional parts of the functionality. When optional parts of the functionality are implemented, the API shall be supported.

6.1.1
High level architecture

[image: image4.wmf]Required

PersonalJava APIs

Optional

PersonalJava APIs

Required

JavaPhone APIs

Optional

JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

Figure 4: Basic functional architecture of a PersonalJava MExE device

The functional architecture of a Java MExE classmark 2 device is shown in Figure 4 "Basic functional architecture of a PersonalJava MExE device". Java applets, applications, and services access functionality via the MExE PersonalJava API. The MExE PersonalJava API is based on a combination of optional Java APIs approved by Sun Microsystems and the Wireless Profile of the JavaPhone API [4] as defined by the JavaPhone Expert Group. The JavaPhone API is based on the PersonalJava API [3] defined by Sun Microsystems.

6.1.2
High level functions

6.1.2.1
Optionality

The use of Java encourages development of modular interfaces and minimal required functionality. Additional functionality is provided by optional APIs specified in terms of the Java language. In general, optionality is specified in terms of Java packages. Packages are containers for the highest level of functionality in the Java language. In some cases, optionality is specified in terms of Java classes and interfaces. Classes and interfaces are elements contained inside packages.

The following Table 4 "Optionality of the Wireless Profile of the JavaPhone APIs" specifies the Sun Microsystems defined optionality of the Wireless Profile of the JavaPhone APIs. Within some of the packages, certain classes and methods may be individually specified as optional by the JavaPhone API specification.

Where a mandatory package is identified, it is implicit that any packages called by that mandatory package are also mandatory.

Table 4: Optionality of the Wireless Profile of the JavaPhone APIs

	JavaPhone API
	Java package
	Optionality

	Addressbook
	Javax.pim.addressbook
	Mandatory

	User Profile
	Javax.pim.userprofile
	Mandatory

	Calendar
	Javax.pim.calendar
	Mandatory

	Network
	Java.net
	Mandatory

	Datagram
	Javax.net.datagram
	Mandatory

	Power Monitor
	Javax.power.monitor
	Mandatory

	Power Management
	Javax.power.management
	Optional

	Install
	Javax.install
	Optional

	Communications
	Java.comm
	Optional

	SSL
	Javax.net.ssl
	Optional

	JTAPI Core Package
	Javax.telephony
	Mandatory

	JTAPI Core Capabilities Package
	Javax.telephony.capabilities
	Mandatory

	JTAPI Core Events Package
	Javax.telephony.events
	Mandatory

	JTAPI Call Control Package
	Javax.telephony.callcontrol
	Optional

	JTAPI Call Control Capabilities Package
	Javax.telephony.callcontrol.capabilities
	Optional

	JTAPI Call Control Events Package
	Javax.telephony.callcontrol.events
	Optional

	JTAPI Phone Package
	Javax.telephony.phone
	Optional

	JTAPI Phone Capabilities Package
	Javax.telephony.phone.capabilities
	Optional

	JTAPI Phone Events Package
	Javax.telephony.phone.events
	Optional

	JTAPI Mobile Package
	Javax.telephony.mobile
	Mandatory

	
	Java.math
	Optional

	
	Java.rmi
	Optional

	
	Java.rmi.dgc
	Optional

	
	Java.rmi.registry
	Optional

	
	Java.rmi.server
	Optional

	
	Java.security
	Optional

	
	Java.security.interfaces
	Optional

	
	Java.sql
	Optional

	
	Java.io
	Optional

6.1.2.2
Required and optional PersonalJava APIs

MExE classmark 2 devices shall support the PersonalJava specification [3]. The PersonalJava APIs provide a standardised and readily implementable execution environment as a means for applications, applets, and content:

· to access and personalise the user interface via the java.awt packages;

· to utilise both Internet and Intranet connections via the java.net package.

6.1.2.3
Required and optional JavaPhone APIs

The JavaPhone APIs extend the PersonalJava APIs to provide functionality unique to telephony devices. MExE classmark 2 devices shall support the Wireless Profile of the JavaPhone API specification [4]. MExE classmark 2 devices shall support all APIs specified as required by the Wireless Profile in the JavaPhone API specification. All APIs that are optional in the Wireless Profile shall be optional in MExE classmark 2 devices.

6.1.2.3.1
Application installation

MExE classmark 2 devices shall support the following JAR file manifest entries (as described in the JavaPhone specification) as described below:

-
Implementation-Title

the Implementation-Title shall be used in any textual description of the application which is displayed in the UI element used to launch the application. E.g. the text displayed with an icon.

-
Main-Icon

the use of icons to launch applications is optional, however if icons are used as elements to launch the application, then the icon file within the JAR file named by the Main-Icon attribute shall be displayed, and may be scaled if desired.

-
Main-Class and Class-Path

when the application is launched, the MExE Java VM shall be supplied with the classpath and shall call the main() method in the class named by the Main-Class attribute.

6.1.2.3.2
Power

MExE classmark 2 devices shall support the Power Monitor package (javax.power.monitor) as specified by the JavaPhone API to access the power level of the MExE device and receive notifications concerning changes in power states.

Note that the Power Monitor package does not specify the minimum required events that should be generated under certain circumstances. MExE classmark 2 device shall at least implement the following event generation:

· BatteryCritical

shall be generated when the battery is at a critically low level.

· BatteryNormal

shall be generated when the battery is no longer low.

All the other event generation should be supported by the implementation.

6.1.2.3.3 Datagram recipient addressing

The syntax described in Concrete Addressing [4] specifies the format to be used for raw text-only GSM SMS messages, UDP datagram via IP, and WAP datagram via GSM SMS message(s).

As a minimum, the formats above shall be supported if the MExE device supports the relevant bearer/transport combination.

Note that for the purposes of this clause, “GSM SMS” means SMS as defined by the 3GPP specifications including 23.040.

6.1.2.4
Required and optional MExE PersonalJava APIs

MExE classmark 2 devices shall not be required to support any other Java APIs.

MExE classmark 2 devices may optionally support any other Java APIs which comply with the MExE security requirements in Table 6 "Security domains and actions", such as:

-
OCF SmartCard API OpenCard, available from [21]. If the MExE device supports smartcards other than the (U)SIM, and the smartcard is open to 3rd party applications, then the opencard.core.terminal section of the OpenCard API may be used to access the card.

6.1.2.5
Mandated services and applications

6.1.2.5.1
Network protocol support

Support for network protocols in MExE classmark 2 devices is specified in the following Table 5 "Support for network protocols":

Table 5: Support for network protocols

	Protocol
	Optionality

	HTTP/1.1 [9]
	Mandatory

	HTTPS
	Mandatory

	Gopher
	Optional

	ftp
	Optional

	mailto [25]
	Mandatory

	File
	Optional

6.2
Classmark 3 MExE devices

Support of CLDC/MIDP in a MExE classmark 3 device as detailed in this subclause is mandatory.

MExE Classmark 3 devices are based on the J2ME Connected Limited Device Configuration (CLDC) with the Mobile Information Device Profile (MIDP).

All APIs defined by CLDC and MIDP shall be supported by a MExE classmark 3 device.

6.2.1
High level architecture

Figure 5: Functional architecture of a Classmark 3 MExE device

The functional architecture of a Classmark 3 MExE device is shown in Figure 5 "Functional architecture of a Classmark 3 MExE device". The MExE API is based on the combination of CLDC APIs and MIDP APIs. OEM specific APIs are outside the scope of MExE specification. CLDC and MIDP APIs are defined in J2ME specified by Sun Microsystems [34,35].

6.2.2
High level functionality

J2ME CLDC and MIDP addresses a large market of resource-constrained devices and is aimed to provide complete end-to-end solution for creating dynamically extensible networked products and applications. It allows the use of Java programming language as the standard platform for secure delivery of dynamic content for the extensible next-generation devices.

In order to fit into various types of the devices and support extensibility, J2ME defines in Configuration a minimum platform with a virtual machine features and minimum libraries which are available on all devices of similar class. In a Profile J2ME addresses the specific demand of a certain category of the devices allowing additional APIs. Profile is implemented on top of configuration (see Figure 5 "Functional architecture of a Classmark 3 MExE device"). Classmark 3 MExE device shall be based on the following types of configuration and profile: Connected Limited Device Configuration (CLDC) and Mobile Information Device Profile (MIDP).

6.2.2.1
Connected Limited Device Configuration (CLDC)

Classmark 3 devices shall support CLDC specification [34].

CLDC provides only high level libraries without focus on any specific device categories. Defining "the lowest common denominator" of Java technology all features included in CLDC must be generally applicable to a wide variety of the devices. CLDC does not address to a certain device category. Such features are specified in a profile. CLDC does not define any optional features.

The classes provided by CLDC are either subset of J2SE (Standard Edition) classes or CLDC specific classes which can be mapped onto J2SE. Classes belonging to the packages: Java.io, Java.lang, Java.util are a subset of corresponding Java2SE libraries, while classes specified in Javax.microedition.io are specific CLDC classes, which, however, can be mapped onto Java2SE.

Javax.microedition.io provides generic connection framework for supporting input/output and networking in a generalized and extensible manner. The framework is a functional subset of Java2SE classes which can be mapped to common low-level hardware or to any Java2SE implementation. It does not provide a set of different kinds of abstractions for different forms of communications, but rather a set of related abstractions are used at the application programming level.

The framework uses a hierarchy of Connection interfaces that group together classes of protocols with the same semantics. The actual supported protocols or implementation of the specific protocols is outside the scope of CLDC Generic Connection Framework and is maintained at the profile level.

The basic set of available Connection interfaces is the following:

- Connection

- ContentConnection

- Datagram

- DatagramConnection

- InputConnection

- OutputConnection

- StreamConnection

 - StreamConnectionNotifier

6.2.2.2
Mobile Information Device Profile (MIDP)

MExE classmark 3 devices shall support MIDP specification [35]. MIDP is based on CLDC. Some of the features of CLDC are modified or extended by MIDP [35].

6.2.2.2.1
Networking

While CLDC specifies only a generic Connector used for all types of connections, MIDP extends connectivity support by providing support of the subset of the HTTP protocol. HttpConnection API provides the additional functionality to set request header, parse response headers and perform HTTP specific functions. The API must support RFC 2396 [40] and RFC 2616 [41].

The MIDP does not provide support for Datagrams. If a Datagram API is to be implemented, the DatagramConnection interface defined in CLDC shall be used.

6.2.2.2.2
MID Applications (MIDlet)

A MIDP application (or MIDlet) uses the APIs defined by the MIDP and CLDC specifications. One or more MIDlets may be packed in one JAR file. Sharing of data between MIDlets is controlled by the individual APIs (e.g. Record Management System API).

Application Management Software provides an environment in which a MIDlet is installed, started, stopped and uninstalled. Each JAR file can be accompanied by an Application Descriptor (a text file consisting of name/value pairs), which is used to manage MIDlet and is used by MIDlet for configuration specific attributes. With the help of descriptor file, verification prior to software download is done to ensure that the MIDlet is suited to the device: Java Application Manager checks if the application already exists on the device, verifies the version number (whether an update is needed or not) and reading the JAR-file-size information ensures that there is sufficient amount of memory on the device to save the file. The minimum attributes which the Application Descriptor must contain are the following:

· MIDlet-Name

· MIDlet-Version

· MIDlet-Vendor

· MIDlet-Jar-URL

· MIDlet-Jar-Size

Mandatory and optional attributes are defined in [35]. If the mandatory attributes are not identical in the descriptor file and in the manifest file, the JAR file shall not be installed.

6.2.2.2.3
MIDlet Suites

MIDlets may be packaged together in a single JAR file, forming a MIDlet suite. MIDlets in a MIDlet suite share the classes in the JAR file and the persistent storage is the MIDP Record Management System.

MIDlets in a MIDlet suite may be discovered, transferred, installed and deleted together as a packaged set of MIDlets. The deletion of a MIDlet in a MIDlet suite may result in the deletion of the entire MIDlet suite, in which case the user shall be notified of the deletion of the MIDlet suite.

6.2.2.2.4
Record Storage

The MIDP provides a mechanism for MIDlets to persistently store data and later retrieve it. The persistent storage mechanism is called Record Management System. Record stores are created in platform-dependent locations and are not exposed to MIDlets. The record store maintains a version number, which is incremented each time the content of the record store is modified. A record store is shared between all MIDlets in a MIDlet suite.

6.2.2.3
Required and optional MExE APIs

Support of any other Java APIs besides CLDC and MIDP is not mandated in a Classmark 3 MExE device. A Classmark 3 MExE device may optionally support any other Java APIs which comply with the MExE security requirements.

6.2.3
Service discovery and management

A browser installed on a MExE device should support MIME type text/vnd.sun.j2me.app-descriptor. This support allows the user to browse and discover a Java application which can then be downloaded. Capability negotiation information in the request header can determine which application to present. MIDlets and MIDlet suites should be indicated to the user, and if the MExE device has a display, may be presented as an icon and a tag or as a textual tag only.

A JAD file can be downloaded and used to determine if the MIDlet is deemed suitable for download and installation. If it is suitable, the JAR file can be downloaded and installed. If not, the MExE device should be able to prompt the user so that the user might choose to take such actions such as deletion of some existing applications if there is not enough space to install the new application. If the application chosen to be installed already exists on the device, the user should be notified so that he could take further actions either to download the chosen version or to retain the existing one.

The user should be able either to launch the MIDlet immediately or later.
7
CLI MExE Devices

Support of CLI Compact Profile in a MExE classmark 4 UE as detailed in this subclause is mandatory.

MExE Classmark 4 devices shall be based CLI Compact Profile specifications [45]. The specifications define the runtime environment and APIs available to a CLI based MExE device such that services (specified in the form of language independent classes and interfaces) can control such a device in a standardised way.

All mandatory components of the CLI compact profile shall be included. Additional CLI APIs or OEM APIs may be available. Services and applications shall be able to determine the presence of additional parts of the functionality. When additional parts of the functionality (e.g. particular optional CLI components) are implemented, the API exposing that functionality shall be supported.

7.1
High level architecture

Figure X: Basic functional architecture of a CLI MExE device

The functional architecture of a CLI MExE classmark 4 device is shown in Figure X "Basic functional architecture of a CLI MExE device". CLI based applications and services access functionality via the MExE CLI Compact Profile API. Additional CLI APIs and OEM specific APIs are outside the scope of the MExE specification. The CLI Compact Profile APIs are defined in CLI specified by ECMA TG39.

7.2
High level functionality

CLI provides a language-neutral, CPU and OS portable, secure infrastructure for executing applications and services that interoperate seamlessly with highly available web services. The CLI Compact Profile provides a mobile client-focussed subset of these services on a broad market of connected devices. Using multiple programming languages for application and service creation allows adoption of a large pool of programming talent, as well as interoperability between existing service components.

Functionality is exposed to applications and services in the form of classes and interfaces. Classes can be written in any supported language. APIs can be exposed to the developer using the language syntax of choice. Classes and interfaces are collected into namespaces, which aim to represent a coherent, mutually-dependant set of functionality.

The following Table Y "CLI Compact Profile Namespaces” specifies the defined mandatory namespaces, ie the namespaces defined in the CLI Compact Profile containing classes which are required for CLI Compact Profile conformance.
Table Y: CLI Compact Profile Namespaces

	CLI Compact Profile Namespaces

	System

	System.Collections

	System.Globalization

	System.IO

	System.Text

	System.Threading

	System.Runtime.CompilerServices

	System.Reflection

	System.Net

	System.XML

The namespaces outlined in Table Y define the core of the CLI programming model. The System namespace defines data types, including simple data types such as integers, collections such as arrays, and string data types with methods for textual manipulation. System.Globalization enables applications to adapt at runtime to user and cultural UI preferences by modifying list sorting order, currency symbol selection, date and calendar formats, input methods, and language presentation within text strings. The programming model supports threads, with thread manipulation primitives defined in System.Threading. System.Reflection enables progammatic inspection of application metadata such as class structure, properties, and data types on method parameters. System.Net includes support for transport-independent sockets, HTTP connections, and infrastructure for consuming web services. System.XML enables simple parsing and construction of XML objects.
7.2.1
Network protocol support

Support for network protocols in MExE classmark 4 devices is specified in the following Table Z "Support for network protocols in Classmark 4 devices":

Table Z: Support for network protocols

	Protocol
	Optionality

	HTTP/1.1 [9]
	Mandatory

	HTTPS
	Mandatory

	SOAP [46]
	Mandatory

	Gopher
	Optional

	ftp
	Optional

	mailto [25]
	Optional

	File
	Optional

7.2.2 Power Management

MExE Classmark 4 devices have no application or service accessible APIs to detect the power level of the device. Classmark 4 applications or services may be paused if power passes below a certain threshold. Such an activity is implementation dependant.

8
Charging

Support of charging is outside the scope of MExE standardisation.

The following informative subclauses provide a brief overview of the charging possibilities enabled by MExE.

8.1
Generic charging support

The standard GSM/UMTS charging records contain information sufficient to associate bearer usage and SMS/USSD messages with a subscriber.

Third party service providers and/or service providers may define charging regimes for MExE services (e.g. on a MExE or WAP server).

8.2
WAP charging support

The WAP protocol suite in [6], with upgrades as identified in this specification, does not specify mechanisms for charging (e.g. charging records) or subscription management. WAP is bearer independent and is running as an application on top of the bearer network. However the WAP architecture suggests that appropriate charging information can be collected in the WAP Gateway; the point of convergence for all WAP traffic.

The WAP security protocol can be used for authentication of the subscriber.

8.3
Java charging support

MExE Java devices do not require any additional specific charging (e.g. charging records) or subscription management. Java usage of network resources is bearer independent and runs as applications on top of the bearer network.

8.4
CLI charging support

MExE CLI devices do not require any additional specific charging (e.g. charging records) or subscription management. Use of network resources from a CLI application or service is bearer independent and runs as applications on top of the bearer network.

 OEM APIs

MExE Applications

 MIDP APIs

CLDC APIs

MExE Applications

 Platform Extensions

 Optional CLI APIs

CLI Compact Profile APIs

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

3GPP

_1043506127.ppt

Voice-based access

Data services

Supplementary services

Multimedia services

		operator / handset manufacturer / 3rd party services

		multimedia services

		multimedia messaging services

		SMS messaging

		notification services

		fax services

		store/forward services

		e-mail/v-mail services

		WWW access and content

		services download

		content download

		handset upgrades

		synchronisation services

		backup services

		user to user services

		data broadcast

		protocol translations

		bearer control

		etc.

Internet

services

Multimedia

services

Circuit/packet

switched

services

MExE Service Environment

MExE device

Access network

(e.g. wireless, fixed, cordless)

MExE device

_1043771747.doc

MSE

capability

negotiation

store / access

user profile

(ME,(U)SIM,MSE)

user profile

settings

User

_989235044.doc

Required PersonalJava APIs

Optional PersonalJava APIs

Required JavaPhone APIs

Optional JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API

